Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.518
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 273: 116161, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430581

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a worldwide common plasticizer. Nevertheless, DEHP is easily leached out to the environment due to the lack of covalent bonds with plastic. High dose of DEHP exposure is often observed in hemodialysis patients because of the continual usage of plastic medical devices. Although the liver is the major organ that catabolizes DEHP, the impact of long-term DEHP exposure on the sensitivity of liver cancer to chemotherapy remains unclear. In this study, we established long-term DEHP-exposed hepatocellular carcinoma (HCC) cells and two NOD/SCID mice models to investigate the effects and the underlying mechanisms of long-term DEHP exposure on chemosensitivity of HCC. The results showed long-term DEHP exposure potentially increased epithelial-mesenchymal transition (EMT) in HCC cells. Next generation sequencing showed that long-term DEHP exposure increased cell adhesion/migratory related genes expression and blunted sorafenib treatment induced genes alterations. Long-term exposure to DEHP reduced the sensitivity of HCC cells to sorafenib-induced anti-migratory effect by enhancing the EMT transcription factors (slug, twist, and ZEB1) and mesenchymal protein (vimentin) expression. In NOD/SCID mice model, we showed that long-term DEHP-exposed HCC cells exhibited higher growth rate. Regarding the anti-HCC effects of sorafenib, subcutaneous HuH7 tumor grew slowly in sorafenib-treated mice. Nonetheless, the anti-tumor growth effect of sorafenib was not observed in long-term DEHP-exposed mice. Higher mesenchymal markers and proliferating cell nuclear antigen (PCNA) expression were found in sorafenib-treated long-term DEHP-exposed mice. In conclusion, long-term DEHP exposure promoted migratory activity in HCC cells and decreased sorafenib sensitivity in tumor-bearing mice.


Assuntos
Carcinoma Hepatocelular , Dietilexilftalato , Neoplasias Hepáticas , Ácidos Ftálicos , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Dietilexilftalato/toxicidade , Camundongos SCID , Camundongos Endogâmicos NOD , Resultado do Tratamento
2.
Drug Des Devel Ther ; 18: 829-843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524877

RESUMO

Tyrosine kinase inhibitors (TKIs) have been recognized as crucial agents for treating various tumors, and one of their key targets is the intracellular site of the vascular endothelial growth factor receptor (VEGFR). While TKIs have demonstrated their effectiveness in solid tumor patients and increased life expectancy, they can also lead to adverse cardiovascular effects including hypertension, thromboembolism, cardiac ischemia, and left ventricular dysfunction. Among the TKIs, sorafenib was the first approved agent and it exerts anti-tumor effects on hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) by inhibiting angiogenesis and tumor cell proliferation through targeting VEGFR and RAF. Unfortunately, the adverse cardiovascular effects caused by sorafenib not only affect solid tumor patients but also limit its application in curing other diseases. This review explores the mechanisms underlying sorafenib-induced cardiovascular adverse effects, including endothelial dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, dysregulated autophagy, and ferroptosis. It also discusses potential treatment strategies, such as antioxidants and renin-angiotensin system inhibitors, and highlights the association between sorafenib-induced hypertension and treatment efficacy in cancer patients. Furthermore, emerging research suggests a link between sorafenib-induced glycolysis, drug resistance, and cardiovascular toxicity, necessitating further investigation. Overall, understanding these mechanisms is crucial for optimizing sorafenib therapy and minimizing cardiovascular risks in cancer patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Hipertensão , Neoplasias Renais , Neoplasias Hepáticas , Humanos , Sorafenibe/efeitos adversos , Carcinoma Hepatocelular/patologia , Antineoplásicos/efeitos adversos , Fator A de Crescimento do Endotélio Vascular , Niacinamida , Compostos de Fenilureia/efeitos adversos , Neoplasias Hepáticas/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Hipertensão/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos
3.
J Mater Chem B ; 12(10): 2628-2638, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38376513

RESUMO

Magnetic nanomaterial-mediated magnetic hyperthermia is a localized heating treatment modality that has been applied to treat aggressive cancer in clinics. In addition to being taken up by tumor cells to function in cancer therapy, magnetic nanomaterials can also be internalized by immune cells in the tumor microenvironment, which may contribute to regulating the anti-tumor immune effects. However, there exists little studies on the distribution of magnetic nanomaterials in different types of cells within tumor tissue. Herein, ferrimagnetic vortex-domain iron oxide nanorings (FVIOs) with or without the liver-cancer-targeting peptide SP94 have been successfully synthesized as a model system to investigate the effect of surface modification of FVIOs (with or without SP94) on the distribution of tumor cells and different immune cells in hepatocellular carcinoma (HCC) microenvironment of a mouse. The distribution ratio of FVIO-SP94s in tumor cells was 1.3 times more than that of FVIOs. Immune cells in the liver tumor microenvironment took up fewer FVIO-SP94s than FVIOs. In addition, myeloid cells were found to be much more amenable than lymphoid cells in terms of their ability to phagocytose nanoparticles. Specifically, the distributions of FVIOs/FVIO-SP94s in tumor-associated macrophages, dendritic cells, and myeloid-derived suppressor cells were 13.8%/12%, 3.7%/0.9%, and 6.3%/1.2%, respectively. While the distributions of FVIOs/FVIO-SP94s in T cells, B cells, and natural killer cells were 5.5%/0.7%, 3.0%/0.7%, and 0.4%/0.3%, respectively. The results described in this article enhance our understanding of the distribution of nanomaterials in the tumor microenvironment and provide a strategy for rational design of magnetic hyperthermia agents that can effectively regulate anti-tumor immune effects.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Hipertermia Induzida/métodos , Magnetismo , Fenômenos Magnéticos , Microambiente Tumoral
4.
Phytomedicine ; 126: 155208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387275

RESUMO

BACKGROUND: Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS: TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS: H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION: The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Neoplasias Pulmonares , Ácido Oleanólico , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ácido Oleanólico/metabolismo , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Exossomos/metabolismo , Hipóxia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
5.
J Ethnopharmacol ; 326: 117935, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38408692

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is the most common severe liver disease globally, progressing further into nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Vasaguduchyadi Kwatha (VK) is an Ayurvedic formulation traditionally used to treat liver diseases and other metabolic complications. This study is an ethnopharmacological approach to unravel this indigenous remedy. AIM OF THE STUDY: We aimed to discover the probable mechanism of action of VK against NASH in this study, using network pharmacology, molecular docking, in vitro study, and preclinical investigation. METHODS AND RESULTS: Among the 55 components identified, 10 were confirmed based on mass, elution charecteristics, MS/MS analysis data, and fragmentation rules. Computational study indicated 92 targets involved in the central pathways of NASH, out of which only 15 targets and 9 VK constituents have significant docking scores. In vitro and in vivo analysis results showed that VK significantly reduces weight gain and improves insulin sensitivity, dyslipidemia, steatohepatitis and overall histological features of NASH compared to saroglitazar (SGZR). CONCLUSION: Our detailed study yielded three signalling pathways related to NASH on which VK has maximum effect, bringing up a probable alternative treatment for NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Fígado/metabolismo
6.
Ann Palliat Med ; 13(2): 344-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373778

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy with many patients presenting with local disease. As of date, the use of radiation is not included in the commonly utilized Barcelona Clinic Liver Cancer (BCLC) classification but is in the National Comprehensive Cancer Network guidelines. Radiation can volumetrically cover the entire tumor and with novel technologic advances can be administered non-invasively with excellent clinical outcomes with few adverse events. The gold standard for localized early HCC (such as BCLC-A) is resection or transplantation. In patients who are not candidates for surgical treatment, locoregional therapy should be considered as an optimal therapy for these patients. Tumor ablation techniques such as microwave ablation (MWA) and radiofrequency ablation (RFA) are excellent tools to control local disease or bridge to transplantation. Should these not be possible though then ablation with external beam radiation is also capable of yielding comparable local control and serve as a bridge to transplant without worse rates of adverse events. For tumors that meet Milan criteria for transplantation, in comparison to transarterial chemoembolization (TACE), there is considerable randomized evidence demonstrating better local control, less adverse events, better progression-free survival (PFS), and less costly. It can be utilized as a bridge in Barcelona liver class B. For larger localized tumors though (extrahepatic disease or vascular invasion like BCLC-C), stereotactic body radiation therapy (SBRT) is shown via a randomized clinical trial to have a survival benefit, local control benefit, and no worse adverse events compared to systemic therapy. In this setting, it should be considered the local consolidation standard of care.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Estadiamento de Neoplasias , Estudos Retrospectivos , Quimioembolização Terapêutica/métodos , Resultado do Tratamento
7.
Cells ; 13(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334679

RESUMO

A well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers' (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.


Assuntos
Berberina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Selênio , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Selênio/farmacologia , Berberina/farmacologia , Prata/farmacologia , Neoplasias Hepáticas/patologia , Linhagem Celular
8.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338736

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Liver cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease represent major risk factors of HCC. Multiple different treatment options are available, depending on the Barcelona Clinic Liver Cancer (BCLC) algorithm. Systemic treatment is reserved for certain patients in stages B and C, who will not benefit from regional treatment methods. In the last fifteen years, the arsenal of available therapeutics has largely expanded, which improved treatment outcomes. Nevertheless, not all patients respond to these agents and novel combinations and drugs are needed. In this review, we aim to summarize the pathway of trials investigating the safety and efficacy of targeted therapeutics and immunotherapies since the introduction of sorafenib. Furthermore, we discuss the current evidence regarding resistance mechanisms and potential novel targets in the treatment of advanced HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sorafenibe/uso terapêutico , Fatores de Risco
9.
Biomater Sci ; 12(7): 1864-1870, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38411494

RESUMO

Hepatocellular carcinoma (HCC) is characterized by a high degree of malignancy and mortality. Sorafenib (SOR), a multi-kinase inhibitor, is clinically used in the treatment of HCC. However, SOR suffers from serious side effects and drug resistance. The development of novel therapeutic strategies for HCC therapy is urgently needed. Sonodynamic therapy (SDT) has unique advantages in treating deep tumors due to the merits of deep tissue penetration, low side effects, and the absence of drug resistance. Here, we developed multifunctional nanoparticles (NPs) termed SOR-TCPP@PEG-FA by assembling SOR, tetrakis (4-carboxyphenyl) porphyrin (TCPP), and folic acid (FA)-modified DSPE-PEG. The FA group enhances the tumor targeting capability of these NPs, while TCPP generates ROS under ultrasound (US) irradiation, which are toxic to tumor cells, and SOR with chemotherapeutic effects is released, thus realizing the synergistic SDT and chemotherapy of tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Porfirinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Linhagem Celular Tumoral
11.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403351

RESUMO

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Proteína de Ligação a GTP rhoC/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Sorafenibe , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Movimento Celular , Proliferação de Células
12.
J Ethnopharmacol ; 325: 117893, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336184

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erzhu Jiedu Recipe (EZJDR) is a formula of traditional Chinese medicine (TCM) for treating hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). However, its effective components and the mechanism of action remain unclear. AIM OF THE STUDY: To explain how the active compounds of EZJDR suppress the growth of hepatoma cells. METHODS: UHPLC-Q-Exactive Orbitrap HRMS was used to identify the chemical constituents of EZJDR and their distribution in the serum and liver of mice. Together with experimental investigations, network pharmacology unraveled the molecular mechanism of components of EZJDR underlying the inhibited Hep3B cells. RESULTS: A total of 138 compounds which can be divided into 18 kinds of components (such as sesquiterpenoids, diterpenoids, anthraquinones, flavonoids and so on) were found in the aqueous extract of EZJDR. Of these components, the tricyclic-diterpenoids exhibited a highest exposure in the serum (74.5%) and liver (94.7%) of mice. The network pharmacology revealed that multiple components of EZJDR interacted with key node genes involved in apoptosis, proliferation, migration and metabolism through various signaling pathways, including ligand binding and protein phosphorylation. In vitro experiments demonstrated that 6 tricyclic-diterpenoids, 2 anthraquinones and 1 flavonoid inhibited the viability of Hep3B cells, with IC50 values ranging from 3.81 µM to 37.72 µM. Dihydrotanshinone I had the most potent bioactivity, arresting the S phase of cell cycle and inducing apoptosis. This compound changed the expression of proteins, including Bad, Bax, Bcl-2, Bal-x, caspase3 and catalase, which were associated with mitochondria-mediated apoptotic pathways. Moreover, dihydrotanshinone I increased the levels of p21 proteins, but decreased the phosphorylated p53, suggesting accumulation of p53 protein prevented cell cycle progression of Hep3B cells with damaged DNA. CONCLUSIONS: These results suggested that multiple components of EZJDR-diterpenoid, anthraquinone and flavonoid-could be the effective material for the treatment of HBV-HCC. This research provided valuable insights into the molecular mechanism of action underlying the therapeutic effects of EZJDR.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Medicamentos de Ervas Chinesas , Furanos , Neoplasias Hepáticas , Fenantrenos , Quinonas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53 , Cromatografia Líquida de Alta Pressão , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antraquinonas/uso terapêutico , Diterpenos/uso terapêutico
13.
Planta Med ; 90(4): 298-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219733

RESUMO

Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both in vitro and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC50 values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC50 concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.


Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Neoplasias Hepáticas , Silimarina , Telomerase , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Silimarina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico
14.
Theranostics ; 14(1): 436-450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164156

RESUMO

Rationale: Vitamin D (VD) has been suggested to have antitumor effects, however, research on the role of its transporter vitamin D-binding protein (VDBP, gene name as GC) in tumors is limited. In this study, we demonstrated the mechanism underlying the inhibition of vasculogenic mimicry (VM) by VDBP in hepatocellular carcinoma (HCC) and proposed an anti-tumor strategy of combining anti-PD-1 therapy with VD. Methods: Three-dimensional cell culture models and mice with hepatocyte-specific GC deletion were utilized to study the correlation between VDBP expression and VM. A patient-derived tumor xenograft (PDX) model was further applied to validate the therapeutic efficacy of VD in combination with an anti-PD-1 drug. Results: The study revealed that VDBP expression is negatively correlated with VM in HCC patients and elevated VDBP expression is associated with a favorable prognosis. The mechanism studies suggested VDBP hindered the binding of Twist1 on the promoter of VE-cadherin by interacting with its helix-loop-helix DNA binding domain, ultimately leading to the inhibition of VM. Furthermore, VD facilitated the translocation of the vitamin D receptor (VDR) into the nucleus where VDR interacts with Yin Yang 1 (YY1), leading to the transcriptional activation of VDBP. We further demonstrated that the combination of VD and anti-PD-1 led to an improvement in the anti-tumor efficacy of an anti-PD-1 drug. Conclusion: Collectively, we identified VDBP as an important prognostic biomarker in HCC patients and uncovered it as a therapeutic target for enhancing the efficacy of immune therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Proteína de Ligação a Vitamina D/uso terapêutico , Neoplasias Hepáticas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral
15.
Cancer Immunol Immunother ; 73(1): 18, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240856

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor worldwide. Within HCC's tumor microenvironment, focal adhesion kinase (FAK) plays a critical role. Regulatory T cells (Treg) modulate the polarization of tumor-associated macrophages , but the relationship between FAK, Treg cells, and macrophages remains underexplored. Phellinus linteus (PL) shows promise as a treatment for HCC due to its pharmacological effects. This study aimed to explore the relationship between FAK and Treg-macrophages and to assess whether PL could exert a protective effect through the FAK process in HCC. Initially, C57BL/6-FAK-/- tumor-bearing mice were utilized to demonstrate that FAK stimulates HCC tumor development. High dosages (200 µM) of FAK and the FAK activator ZINC40099027 led to an increase in Treg (CD4+CD25+) cells, a decrease in M1 macrophages (F4/80+CD16/32+, IL-12, IL-2, iNOS), and an increase in M2 macrophages (F4/80+CD206+, IL-4, IL-10, Arg1, TGF-ß1). Additionally, FAK was found to encourage cell proliferation, migration, invasion, and epithelial-mesenchymal transition while inhibiting apoptosis in HepG2 and SMMC7721 cells. These effects were mediated by the PI3K/AKT1/Janus Kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (p38 MAPK)/Jun N-terminal Kinase (JNK) signaling pathways. Furthermore, PL exhibited a potent antitumor effect in vivo in a dose-dependent manner, reducing FAK, Treg cells, and M2 macrophages, while increasing M1 macrophages. This effect was achieved through the inhibition of the PI3K/AKT/JAK/STAT3, and p38/JNK pathways. Overall, our findings suggest that FAK promotes HCC via Treg cells that polarize macrophages toward the M2 type through specific signaling pathways. PL, acting through FAK, could be a protective therapy against HCC.


Assuntos
Basidiomycota , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linfócitos T Reguladores/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Biomed Pharmacother ; 171: 116215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278024

RESUMO

To date, no total curative therapy for hepatocellular carcinoma (HCC) is available. This study aimed to evaluate the anticancer effect of black Vitis vinifera (VV) seed oil saponifiable (Sap) fraction (BSap) using five different cancer cell lines. The apoptotic and anti-inflammatory impacts of BSap on the cell line with the highest cytotoxic effect were studied. Furthermore, its therapeutic effect on p-dimethylaminoazobenzene (p-DAB)-induced HCC in mice was investigated. The phenolic and vitamin content, as well as the antiradical activities of BSap, were assessed. BSap demonstrated a greater cytotoxic effect on HepG-2 cells (lowest IC50 and highest SI values) than did the other tested cell lines. BSap showed superior anticancer efficacy to 5-FU on all examined cancer cells, particularly HepG-2 cells, by inducing apoptosis and downregulating NF-κB. In HCC-bearing mice, BSap reduced hepatic lipid peroxidation and boosted GSH levels due to its potent antiradical activities and high reducing power. In addition, it had an apoptotic effect by upregulating p53 and BAX and downregulating Bcl-2 fold expression. Moreover, BSap lowered the fold expression of various crucial HCC-related genes: CD133, ALAD1α1, COX-2, ABCG1, AKT1, Gli, Notch1, and HIF1α. Liver function markers and histopathology showed significant improvements in HCC-bearing mice after BSap administration compared to 5-FU. In silico analysis revealed that the most abundant phenolic and fatty acid ingredients of BSap exhibited competitive inhibitory effects on valuable HCC-associated enzymes (NADPH oxidase, histone deacetylase 1, and sepiapterin reductase). Thus, BSap fraction may be a promising treatment of HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Vitis , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Hep G2 , Apoptose , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Óleos de Plantas/farmacologia
18.
Pathol Res Pract ; 253: 155056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183817

RESUMO

In addition to its highly aggressive nature and late diagnosis, hepatocellular carcinoma (HCC) does not respond effectively to available chemotherapeutic agents. The search is on for an ideal and effective compound with low cost and minimal side effects that can be used as an adjunct to chemotherapeutic regimens. One of the mechanisms involved in the pathology of HCC is the oxidative stress, which plays a critical role in tumor survival and dissemination. Our group has already demonstrated the antitumor potential of melatonin against HuH 7.5 cells. In the present study, we focused on the effects of melatonin on oxidative stress parameters and their consequences on cell metabolism. HuH 7.5 cells were treated with 2 and 4 mM of melatonin for 24 and 48 h. Oxidative stress biomarkers, antioxidant enzyme, mitochondrial membrane potential, formation of lipid bodies and autophagic vacuoles, cell cycle progression, cell death rate and ultrastructural cell alterations were evaluated. The treatment with melatonin increased oxidative stress biomarkers and reduced antioxidant enzyme activities of HuH 7.5 cells. Additionally, melatonin treatment damaged the mitochondrial membrane and increased lipid bodies and autophagic vacuole formation. Melatonin triggered cell cycle arrest and induced cell death by apoptosis. Our results indicate that the treatment of HuH 7.5 cells with melatonin impaired antioxidant defense systems, inhibited cell cycle progression, and caused metabolic stress, culminating in tumor cell death.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Humanos , Carcinoma Hepatocelular/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Antioxidantes/uso terapêutico , Neoplasias Hepáticas/patologia , Estresse Oxidativo , Biomarcadores/metabolismo , Apoptose
19.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279258

RESUMO

Patients with advanced hepatocellular carcinoma (HCC) have several systemic treatment options. There are many known risk factors for HCC, and although some, such as hepatitis C, are now treatable, others are not. For example, metabolic dysfunction-related chronic liver disease is increasing in incidence and has no specific treatment. Underlying liver disease, drug resistance, and an increasing number of treatment options without specific biomarkers are all challenges in selecting the best treatment for each patient. Conventional chemotherapy is almost never used for advanced-stage disease, which instead is treated with immunotherapy, tyrosine kinase inhibitors, and VEGF inhibitors. Immune checkpoint inhibitors targeting various receptors have been or are currently undergoing clinical evaluation. Ongoing trials with three-drug regimens may be the future of advanced-stage HCC treatment. Other immune-modulatory approaches of chimeric antigen receptor-modified T cells, bispecific antibodies, cytokine-induced killer cells, natural killer cells, and vaccines are in early-stage clinical trials. Targeted therapies remain limited for HCC but represent an area of potential growth. As we shift away from first-line sorafenib for advanced HCC, clinical trial control arms should comprise a standard treatment other than sorafenib, one that is a better comparator for advancing therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sorafenibe/uso terapêutico , Imunoterapia
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279264

RESUMO

Hepatocellular carcinoma (HCC) presents a significant global health challenge due to limited early detection methods, primarily relying on conventional approaches like imaging and alpha-fetoprotein (AFP). Although non-coding RNAs (ncRNAs) show promise as potential biomarkers in HCC, their true utility remains uncertain. We conducted a comprehensive review of 76 articles, analyzing 88 circulating lncRNAs in 6426 HCC patients. However, the lack of a standardized workflow protocol has hampered holistic comparisons across the literature. Consequently, we herein confined our meta-analysis to only a subset of these lncRNAs. The combined analysis of serum highly upregulated in liver cancer (HULC) gene expression with homeobox transcript antisense intergenic RNA (HOTAIR) and urothelial carcinoma-associated 1 (UCA1) demonstrated markedly enhanced sensitivity and specificity in diagnostic capability compared to traditional biomarkers or other ncRNAs. These findings could have substantial implications for the early diagnosis and tailored treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Carcinoma de Células de Transição , Neoplasias Hepáticas , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/metabolismo , Genes Homeobox , RNA Antissenso , Carcinoma de Células de Transição/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária/genética , RNA não Traduzido , Biomarcadores , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA